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LARGE AXIALLY SYMMETRIC STRETCHING OF A
NONLINEAR VISCOELASTIC MEMBRANE

ALAN S. WINEMANt

Department of Engineering Mechanics, University of Michigan, Ann Arbor, Michigan 48104

Abstract-Two problems of large planar axisymmetric deformations of an annular membrane consisting of a
nonlinear viscoelastic material are solved, one with prescribed deformation at the outer boundary and one with
prescribed force. These problems serve as examples to illustrate the extension to a class ofviscoelastic membrane
problems ofa formulation ofthe corresponding elastic membrane problem suggested by Yang [I}, which is especi
ally convenient for numerical solution. The formulation uses radial and circumferential stretch ratios as dependent
variables, which in the present case are found by solving a system of first order nonlinear partial differential
integral equations. The numerical procedure is such that at each time step, the problem is equivalent to a system
of first order nonlinear ordinary differential equations for the current stretch ratios. This system is then integrated
by the same numerical procedure as in the corresponding elastic problem.

INTRODUCTION

A NUMBER of problems involving large axially symmetric deformations of initially plane
membranes formed of incompressible nonlinear elastic solids have recently been reformu
lated and solved numerically by Yang [1]. The usual formulation defines a radial
deformation function which satisfies a second order nonlinear ordinary differential equa
tion. By introducing the radial and circumferential stretch ratios as dependent variables,
Yang reduced this equation to a system of two linear first order equations whose numerical
solution is more readily obtained. This has the further advantage that boundary conditions
are more easily stated in terms of these stretch ratios than in terms of the deformation
function, while stresses and the deformation function are readily calculated.

Each of these axially symmetric problems involving an elastic membrane suggests a
corresponding problem of large quasistatic motions of a viscoelastic membrane by letting
the membrane now be viscoelastic and the applied axially symmetric stresses vary with
time. The formulation of the latter problem is facilitated by the observation that the same
kinematical assumptions regarding the equilibrium configuration of the elastic membrane
can also be made about each of the sequence of configurations assumed by the viscoelastic
membrane during its motion. A time dependent radial deformation function is thus
defined which satisfies a second order nonlinear partial differential-integral equation.
Because of this similarity in kinematics, the advantages of the stretch ratio formulation
can be extended to the viscoelasticity problem. The purpose here is to illustrate
this approach for a specific problem concerning an initially plane annular membrane of
an incompressible isotropic nonlinear viscoelastic solid. This formulation leads to a
system of two first order nonlinear partial differential-integral equations for the radial
and circumferential stretch ratios as functions of time and undeformed radius. Numerical
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solutions are then obtained for the two point boundary value problems in which the
inner hole is stress free and either time dependent stress or radius is prescribed at the
outer boundary. The numerical procedure is such that at each time step one obtains a
first order system of differential equations for the corresponding stretch ratios, as in the
elasticity case.

The governing equations are developed in Section 2. Although the general method
does not depend on the form of constitutive equation used to represent viscoelastic
behavior, for convenience the governing field equations are derived using a general single
integral constitutive equation. In the elastic problem, the condition that radial stress vanish
at a boundary implies an algebraic relation among the stretch ratios. This same relation
is shown to hold for any viscoelastic constitutive equation. In order to obtain numerical
results, a specific form of constitutive equation must be used. The one selected is discussed
in Section 3. The details of the numerical method are given in Section 4 and the numerical
results are discussed in Section 5.

The stretch ratio formulation has been extended by Yang et al. (see [2, 3J), to a variety
of problems involving axially symmetric deformations of elastic membranes initially in the
shape of surfaces of revolution. Such problems also suggest corresponding viscoelasticity
problems. Just as is illustrated here, because of the similarity in kinematics, the approach
to the elasticity problem can be immediately applied to the viscoelasticity case. Thus,
although there appears to be no "correspondence theorem" proving direct operational
methods for obtaining viscoelasticity solutions from elasticity solutions as in the linear
theories, for the class of problems considered here there is outlined a "correspondence
procedure".

2. FORMULATION

The undeformed annular membrane has inner radius a, outer radius b and uniform
thickness h, where h/a « 1. Let the origin of a cylindrical polar coordinate system coincide
with the center of the hole and its plane z 0 coincide with the middle plane of the sheet.
For a sufficiently thin sheet, the stresses on planes z = const. can be neglected and the
deformations under consideration can be described by the mapping [4J

p =p(r, t), (J =e, ,= zA3(r, t) (2.1)

where (r, e, z) are coordinates in the undeformed state and (p, 8, 0 are coordinates at
time t. The deformation is such that at each time t, the coordinate directions are principal
directions. The stretch ratios in the radial and circumferential directions are, respectively,

op
Al = or (r, t),

(2.2)

while that in the z-direction, A3 , is determined through the incompressibility condition

At A2 A3 = 1. (2.3)

For notational convenience, let Ai = Ai(t), A denote the triplet (At, A2 , A3) and A(r) denote
the triplet (AI(r), Air), A3(r)).
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The strain invariants are

11 = ,1i+,1~+,1L

12 = ,1i,1~+,1~,1~+,1~,1L

777

(2.4)

(2.5)

(2.7)

13 = ,11,12,13 = 1.

For future reference, it will be useful to note that the stretch ratios satisfy the following
compatibility condition for each t ~ 0:

0,12 ,11 - ,12

or r

The non-zero components of stress, per unit deformed area, are in the radial and cir
cumferential directions and are denoted, respectively, by (J 1 and (J2' Their resultants,
measured per unit current length in the appropriate direction in the middle plane of the
membrane, are defined by

T1 = h,13(J1, T2 = h,13(J2, (2.6)

where by (2.1), h,13 is the current thickness of the sheet. The equations governing the quasi
static motion are automatically satisfied in the e and z directions. Taking into considera
tion thickness changes and ignoring the presence of body forces, the equation in the
radial direction is

o
op (pT1) = T2 •

For each time t, (2.7) must be satisfied in the unknown region occupied by the membrane,
p(a, t) ::;; p ::;; p(b, t). It is convenient to regard all quantities of interest as functions of the
initial coordinate r and time t since r varies in the known initial region occupied by the
membrane, a ::;; r ::;; b. Introducing the transformation (2.1) and then using (2.2), (2.3) and
(2.6), equation (2.7) becomes for each t ~ 0,

o 1 ,11,13
-;-(,13(J1) = - -,-«(J2 -(J1)' (2.8)
ur r 112

Define dimensionless variables as follows:

r = ria, P = pia, "5 = bla,

where Co is an elastic modulus and TR is a typical relaxation time. Because of their homo
geneity in r, p, (J1l and Til, equations (2.2), (2.5), (2.7) and (2.8) may be regarded as expressed
in terms of dimensionless variables with the bar notation dropped. There will be no loss
in generality, then, in saying that at the inner radius r = 1 and at the outer radius r = b.

Up to this point, the only difference between the present formulation and that for an
elastic membrane is the presence of a time parameter t. This is entirely a consequence of
the following two points: (1) because the problem is axisymmetric, the radial and circum
ferential directions are principal directions for all t ~ 0, (2) the assumed form of the defor
mation function (2.1) for the viscoelastic membrane at any time t is the same as would be
made for the equilibrium configuration of the elastic membrane. The principal stretch
ratios defined in (2.2), relation (2.5) and the force balance equation (2.7) in terms of principal
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(2.9)

stresses, being derived by spatial operations at each time t, are therefore the same as in the
elastic case. It follows that equation (2.8) arises in both the "elastic" and "viscoelastic"
formulations. The two formulations differ, of course, through the way their respective
constitutive equations relate stress, stretch ratios and time. However, when these latter
equations are combined with (2.8), the elastic and viscoelastic formulations each obtains
one equation for the principal stretch ratios. The second equation in either formulation is
provided by (2.5). Thus, the use of principal stretch ratios as dependent variables in this
viscoelastic membrane problem is a natural extension of their use in the corresponding
elastic membrane problem in [1].

The remainder of the formulation will be carried out using a single integral constitutive
equation to represent the behavior of a nonlinear incompressible isotropic solid. Coleman
and Noll [5] have derived one such model for a theory of finite linear viscoelasticity using
concepts of fading memory, while Pipkin and Rogers [6] have constructed a second model
based on the presumed nonlinear response of a material to a series of step strain inputs.
The Pipkin and Rogers constitutive equation will be used because it involves fewer relaxa
tion functions. Its general form is

O'(t) = -pi + F(t) {R[C(t); 0]+ {o,R[C(r),t-r]dr}FT(t),

where 0, = %(t - r), p is the unknown scalar reaction to (2.3), F is the deformation gradient
tensor, C = FTF. R[C, t] is the strain dependent tensorial relaxation function induced by
a single step strain history, C(r) = C*, r 2: °and has form

(2.10)

cPo, cPI' cP2 being scalar functions of t and the invariants of C.
Writing (2.9) and (2.10) in components with respect to the cylindrical coordinate system

and determining p from the condition that (J 3 = 0, the following expressions for (J 1 and (J 2

are obtained:

(0: = 1,2). (2.11 )

The constitutive equation in (2.9) or (2.11) gives the stress components at a particle only
if Air) is the stretch ratio history for that particle. The stretch ratio history for a specific
particle can be identified by letting .Air) depend on that particle's label, which is taken
as its initial coordinates. Because of the axial symmetry of the problem all particles at the
same initial radius have the same deformation history so .((r) depends only on the initial
radius r. Note that this is also consistent with the use of r as an independent variable in
(2.8).

On substituting (J I from (2.11) into the left hand side of (2.8) and differentiating, one
obtains terms involving oAdor, OA2/or, OA3/or. The latter two can be eliminated by using
(2.5) and the following auxiliary result obtained by differentiating (2.3):
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Evaluating the right hand side of (2.8) by means of (2.11) and rearranging terms, one
obtains an equation of form

011. {5.1

} 5.1011. (r)or
1

F1(1I.)+ 0 G1(1I.;II.(r);t-r)dr + 0 -i-G2(1I.;II.(r);t-r)dr

(2.12)

F1 , F2 , G1 , G2 and G3 depend on the details ofthe calculations and the form of the material
parameters 4Jo, 4J 1, 4J 2' They will be given in the next section when a particular material is
considered. On differentiating the product 11. 3(11, both Oll.3/or and the derivative of (11
give rise to the term oll.dor{-} in (2.12). The derivative of the integrals in (11 also leads to
the integral term involving the history ofoll.dor(r), r ~ 0. Thus, a Volterra integral operator
which is linear in oll.dor, such as appears on left hand side of (2.12), will be present for any
integral constitutive equation. The numerical solution utilizes this property.

Equations (2.5) and (2.12) form a system of two nonlinear partial differential-integral
equations of Volterra type for 1I.1(r, t) and 1I.2(r, t). The system must now be supplemented
by appropriate boundary data. The condition at the inner boundary is that the hole be
stress free, (11(1, t) = 0, t ~ 0. From (2.11) it is seen that this condition is satisfied if
11. 1(1, t) = 11. 3(1, t), t ~ 0, or by (2.3),

t ~ 0. (2.13)

This is related to the more physically meaningful deformation function by (2.2),

p(l, t) = 11. 2(1, t). (2.14)

In concept, specifying the growth of the inner hole p(l, t) gives by (2.13) and (2.14) boundary
data on the stretch ratios. Since the spatial aspect of (2.5), (2.12) defines essentially an
initial value problem in r, one can solve for the stretch ratios to any desired radius and
time. It is then an easy matter to calculate p(r, t), (11 (r, t), (12(r, t) or, more physically, how
the membrane must be stretched so that the inner hole grows as prescribed. In a practical
situation, however, it is more likely that conditions would be specified at the outer radius.
For this reason, problems of the following type are considered:

(a) Relaxation problem-the increase of the outer radius, p(b, t), is specified. By (2.2),
this is equivalent to prescribing 1I.2(b, t) = II.*(t).

(b) Creep problem-the radial stress at the outer boundary, (11(b, t), is specified.
In the particular arrangement considered, there is a series of wires distributed uniformly
around the outer circumference, directed radially outward, strung over pulleys and having
fixed weights on their ends, as shown in Fig. 1. The radial stress is then determined by the
condition that the total weight equal 2np(hIl3)(11 evaluated at r = b. In this case, F*(t) =
p(b, t)1I.3(b, t)(11(b, t) is specified.

In both cases, the numerical method must determine 11. 2(1, t) so that the integration
of (2.5), (2.12) and (2.13) leads the prescribed condition at r = b.

Finally, it is worth pointing out that the boundary condition (11 (1, t) = 0, t ~ 0, will
be satisfied by (2.13) for any constitutive equation for an incompressible isotropic solid.
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FIG. 1. Loading configuration for the creep problem (force boundary condition).

Wineman and Pipkin [7] have shown that the most general form for such a constitutive
equation is:

(2.16)(lX = 1,2,3).

0"= PI+FttlR(i)[G(i)(r1,rZ, ... ,r;);I]}FT, (2.15)

where R(i) is a general functional which is linear in the tensor product G(i)(r l, r z, ... , r;) =

C(r l)C(rZ)" • C(ri), 0 :::;; ri :::;; t, and depends also on a set of invariants I. Such functionals
may contain distributions which give rise to the non-integral terms in (2.9). Calculating
the tensors F and C for deformation (2.1) and then expressing (2.15) with respect to cylin
drical coordinates on the middle plane of the membrane, one obtains

5

0"" = -p+ L R(i)().;).;(rI)A;(rz)···A;(ri);I),
i= 1

(2.17)

Using the condition 0"3 = 0 to determine Pand then the linearity of the functionals in their
tensorial arguments, one obtains:

5

a1 = L R(il(AIAI(r1)···Ai(ri)-A~A~(rl)···A~(rJ; I).
i=1

The condition a1(t) = 0, t 2:: 0, is satisfied if A1(t) = A3(t), t 2:: 0, because the linearity
property of the functionals implies R(i)(O; I) = 0.

3. A SPECIFIC MATERIAL

Pipkin and Rogers [6] do not present any specific forms for the strain dependent
relaxation functions cPi appearing in (2.9), (2.10). Since the present purpose is to illustrate
a method of approach for treating viscoelastic membrane problems, cPo, cPl' cPz are chosen
for both analytical convenience and to represent general features ofa nonlinear viscoelastic
solid.

In particular, the constitutive equation (2.9), for single step strain inputs was chosen
to combine features of the Mooney model of nonlinear elasticity and the standard solid
of linear viscoelasticity. Written with respect to principal directions,

(3.1)
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(3.2)

where I = 11 defined by (2.4) and IX is a dimensionless constant. Relaxation properties
are contained in the coefficient R(l; t) which has a single exponential term analogous
to the relaxation function for the standard solid of the linear theory. Letting Co denote
the initial modulus, Coo the residual modulus, and y = Coo/Co,

R(l,t) = Co((l-y)e- P(I)/+y)

= CoC[I, t].

p(1) - 1 represents a strain dependent relaxation time with

1
p(l) = -(1 +P(1-3»,

rR
(3.3)

where Pis a positive dimensionless constant. The constant rR represents the relaxation
time in the linearized theory since for small deformations I ~ 3.

Note that for both the initial response and the long time residual response, the co
efficient C(I; t) reduces to a constant and (3.1) becomes exactly the constitutive equation
for a Mooney material. In fact, in combining (3.1H3.3) with (2.9), this is also seen to be the
case for transient stretch histories which approach fixed states as t -> 00. The form of
p(I) is such that as the stretch ratios increase, the relaxation time decreases. Some authors
suggest that the amount of stretching does not influence relaxation time [8]. On the other
hand, others allow for this dependence but in a more complicated model than considered
here [9, 10]. By comparing calculations with P= °and P> 0, the influence of this effect
on the behavior of the membrane can be assessed.

When (3.1H3.3) are substituted into (2.9), the stress-stretch ratio history expressions
specialize as follows,

(J1(t)/CO = (Ai -A~)(l +IXA~)

+ {o/C[I(r); t -r] {[Ai - AD [1 +IXA~(r)] +1X[AiA~(r) - Ai(r)Am dr,

(J2(t)/CO = (A~-A~)(I+IXAD

+ f~ o,C[I(r); t - r] {[A~ - A~] [1 +IXAi(r)] + IX[A~A~(r) - A~(r)A~]} dr. (3.4)

The specific form of the functions in the partial differential-integral equation (~.12) corres
ponding to this model are:

F1 = (AtA~ + 3)(1 + IXA~)

F2 = A1(A~:A1)[(AiA~ + 3) +1X(A1A2 + Ai + A~ + AtA~)]

{
'4 2 2 (AtA~ 2)}G1 = o,C[I(r); t-r] (11. 1A2+3)(1 + IXA2(r»+IX Ai(T)A~(T/3A1(r)

G2 = G~o,C[I(r);t-T]+G~o/~~(l(r);t-r) (3.5)

G3 = G3o,C[I(r); t-r] +G30/~~(1(r); t-r)
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, _ 2 21 ( 2t2~ z)
GZ - - IX21(r) 2i(r)A.~(r/ 21(r)

G~ = 22~:r)[P.i2~ -1)(1 +a2~(r»+1X(2i~;~i(r) Ai(t») J [Ji(t)- 2i(r)~~(r)J

, 21 1 1 3 13 3 [3(2 Z -21) Z 12 13 3( 2 1)
G3 = ~~(II.Z -11.1)( + 11.1 22)+ a21 -----x;-(,.lI(t)+ II.z(r»+ II.I AZ 21(r)+ 2Hr)2~(r)

_242Z(,.lZ( )+ 1 ) _2(A1(r)-),z(t»(,.l4,PJF( ) 2t2~ 2Z
z(t»)J

1 2 Zr 2i(t)2~(t) 2z(t) 1 Z 2 r 2i(r)2~(r)

G; = -2~~[21(r)-2z(r)J[2~(r) 2i(r:2~(t)J[(AtA~-I)(l+1X2~(t»

4. NUMERICAL METHOD

The numerical procedure for solving (2.5), (2.12) consists of two main parts. First, the
Lee and Rogers method of linear viscoelasticity [11] is used to solve for oAt/or at each
time step in terms of Aand the past solution. The resultant system of differential equations
is then solved in the elastic case.

Let the interval [0, t] be partitioned by n times [tl = 0, tz , ... , tn = t]. By (3.5), the
first integral in (2.12) can be written as

(4.1)

where the definition ofG1 in terms of ..1.(t) and ..1.(r) is obvious. Expressing (4.1) as a summation
of n -1 integrals over the subintervals (tk , tk+ 1), (k = 1, n 1) and approximating each of
these by the trapezoidal rule, one obtains

(4.2)

Approximating the partial derivatives at r = tk + 1 and r = tk by backward and forward
difference expressions, respectively, and evaluating the argument /(t) at the appropriate
points, (4.2) becomes

1n-l

2 kJ;1 {G 1[2(tn), 2(tk+ 1)](C[I(tk + 1), tn- tk + 1] - C[I(tk + 1), tn- tJ)

(4.3)
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(4.5)

Upon rearranging terms in the summation, one obtains

-2 f: GI(A; A(-r); t--r)d-r ~ GI[A(tn), A(td](C[I(t l ), tn-t2]-C[I(tI)' tn-t l ])

+G,[A(tn), A(tn)] (C[I(tn), 0] - C[I(tn), tn- tn-I]) (4.4)

n-I

+ L GI [A(tn), A(tk)](C[I(tk), tn- tk+ I] - C[I(tk), tn- tk- I))·
k=2

It is seen from (3.5) that the last two integrals of (2.12) can also be written as in (4.1), but
with an additional term involving oC/oI. This is differentiated analytically. However, the
second differentiation with respect to (t - -r) is carried out numerically so as to eliminate
factors (tk+ 1- tk ) and obtain finite sum approximations of form (4.4). In the finite sum
approximations to the second integral, the term depending on A(tk) has OAt!Or(tk) as a co
efficient. For tk < tn' this derivative is approximated by a simple forward difference ex
pression. For notational convenience, the finite sum approximations to the first and third
integrals of (2. 14) are denoted by LI and L3' respectively. Let L~ denote only the terms in
the approximation to the second integral which contain A(tk), k < n, and oAtlOr(tn)G2[A(tn)]
denote the remaining term. It is convenient to note at this point that one also obtains
expressions of type (4.4) in the finite sum approximations to the integrals in the stress
expressions (3.4).

With these preliminaries out of the way, the details of solution can now be discussed.
From (2.5) and (2.12) the initial elastic response, tn = t I = 0, satisfies the following system
of equations,

OAI (t d = ~ F2(A(t I»
or r F,(A(td)'

OA2(t
l

) = AI(tl)-~2(td.
or r

This system can be integrated by the Runga-Kutta method [12] subject to condition
(2.13) at p = 1. The specific value of Ail, t I) is determined so that A2(b, t t> or PA3(11 at
(r, t) = (b, t l ) have the prescribed value, depending on whether a relaxation or creep
problem is being considered. Since the correct value for A2(1, t l ) is not known in advance,
it is determined by a "shooting method", A2(1, t I) is guessed, Al (1, td is evaluated according
to (2.13), (4.5) is integrated and the appropriate condition at p b, say A2(b, t I), is evaluated.
If IA2(b,tl)-A*(tl)1 > e, for some prescribed e, A2(b,t) is incremented and the process is
repeated. This procedure is continued, using linear interpolation of the two most recent
values to determine the next estimate of A2(1, t I)'

For n ~ 2, (2.12) is written in terms of the notation defined following (4.5) as

Noting that oAtlor(tn) can now be found explicitly, system (2.5), (2.12) is written as

OAI( J _ (1/r)(F2(A(tn»+ L3)- L~
or r, t - FI(A(tn» + LI +G2(A(tn» '

OA2( ) = AI(tJ-A2(tJ
~ tnur r

(4.6)

(4.7)
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In the first equation 0£(4.7), F1 , F2 and Gz depend only on A(tn), while Ll' L~ and L3
depend on A(tn) and A(tk ), k < n. Because the latter have been found by solution of (4.7) for
times tk < tn' Ll' L~ and L3 may now be considered functions ofthe independent variable
rand A(tn). Thus, for each time tn' the stretch ratios are found by solving a coupled system
of nonlinear ordinary differential equations. The solution of (4.7), subject to appropriate
boundary conditions at p = 1and p = b, is obtained by the same procedure as was outlined
for the initial elastic response. The value of ..1.2(1, tk) which gives acceptable satisfaction
of the boundary condition is the first guess at time t H 1 .

Once the stretch ratios have been calculated, the radial deformation function p(r, t) is
obtained directly from the second of (2.2), while stresses are calculated from the above
mentioned approximate expressions for (3.4).

Since the summations in the right hand side of (4.7) must be recalculated at each time
step and since their summands are functions of Awhich are evaluated at each iteration for
finding ..1.2(1, tk) and several times during the Runga-Kutta procedure, computation time
must be considered. From (3.4) and (3.5), it is seen that the integrands ofthe stress integrals
and G1, Gz,G~, G; , G3are products offunctions of A. with functions of ,.1('Z'). Consequently,
the right hand side of(4.7) can be written in terms ofproducts offunctions of A. with summa
tions involving ,.1(tk), k = 1, n. As in (4.4) these summations consist ofa partial sum involving
the previously determined A(tk), k < n and one term involving the current unknown A(tn)'
At each time step these partial sums were calculated, stored and treated as radially dependent
coefficients in (4.7).

One useful means of checking the accuracy of solution of system (2.5), (2.12) is that the
residual elastic solution can be calculated directly. Assuming that the stretch ratios reach
a steady state value as t -> 00, (2.12) and (3.4) can be integrated for large t to give, together
with (2.5), the governing equations. The direct solutions of this system can then be com
pared with the large time limit of the transient solution. For the material model considered,
the residual elasticity equations for ..11' ..1.2 are exactly the same as the initial elastic equa
tions (4.5). Thus, jf A2(b, t) = ,.1*(t) is constant in the relaxation problem, the residual
solution coincides with the initial solution. In the creep problem, where O'I(b, t) enters
the boundary condition, Coo < Co so the residual solution must be calculated separately.

5. DISCUSSION

All calculations were carried out for a membrane having an outer radius five times
greater than the inner radius, i.e. b/a = 5. The Mooney model parameter Ij, was chosen as
0·1, and the ratio oflong term to initial moduli Coo/Co was 1/3. For both the creep and
the relaxation problem calculations were carried out for f3 = 0 and f3 = 0·05. For the
former value, relaxation time is independent of stretch ratio. The latter value was chosen
so that the stretch ratio dependent relaxation time l/p(/) defined by (3.3) would be approxi
mately 'Z'R/2 when ,.12 ~ 4 at the inner hole (r = 1) where the most severe stretching occurs.
For the creep problem, detailed calculations were carried out for F*(t) = 3·0, and for the
relaxation problem, ,.1*(t) 1·5. At each time step, the value of ,.12(1, t) was accepted when
1,.12(5, t)-A*I < e or IpA30' llr= 5 - F*I < e, where e = 0-001. In general, for this choice of e,
three or four iterations were required at each time step to arrive at an acceptable value for
..1. 2(1, t). A smaller value of e was not chosen because of increased computation time. For
e = 0·001 and the chosen radial increment and time steps, the creep problem required
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somewhat more than two minutes of computation time. Computations were carried out
on the IBM 360 computer at the University of Michigan Computing Center.

The determination of time steps and radius increments was carried out for the creep
problem with F*(t) = 3·0, this having the more complicated boundary condition at r = 5
and for f3 = 0·05, this causing faster changes in stretch ratios due to smaller relaxation
times. The experience of Lee and Rogers [10] in solving integral equations in linear visco
elasticity suggests that time steps tk should vary logarithmically. This permits small time
increments for early times when quantities are undergoing large variation and gives larger
time increments for later times when variations are smaller. The time steps finally used
were given by the relation tk+ 1 = tklOA

, where A = 0·2 for k 2,10 (up to 0·63), A = 0·05
for k ~ 11, with t 2 = 0·01. Changing t 2 to 0·001 caused a maximum stretch ratio change
of0·0001at t = 0·01, a change ofless than 0·02 per cent which was considered insignificant.
A refinement of the first set of time steps to A = 0·1, k = 2,20 (up to t = 0·63), caused a
maximum stretch ratio change in the fifth decimal place and stress change in the fourth
decimal place, again considered negligible. A smaller value of A for k > 11 was necessary
because time increments became too large. The same computation with A = 0·025,
11 ~ k ~ 45 (up to t = 5·01), A = 0·05, 46 ~ k < 55, produced maximum changes in the
stretch ratio of less than 0·5 per cent and in stresses of less than 1 per cent. This slight
improvement in accuracy was considered offset by the increase in computation time due
to the increased number of time steps.

The numerical procedure turned out to be more sensitive to the choice of the radial
increment d than to the choice of time increments. Since the Runga-Kutta procedure for
integrating (4.7) has an error of 0(d5

), a choice of d = 0·2 is quite adequate for obtaining
the initial solution or directly calculating the residual solution. In fact, changing from
d = 0·2 to d = 0·1 caused at most a fourth decimal place change in the stretch ratios or
stresses. The choice of d = 0·2 is not adequate at intermediate times, however, because the
radial dependent coefficients on the right hand side of (4.7) are found numerically and
depend on the earlier solutions. Hence, d must be smaller than 0·2 in order to ensure
accurate calculation of these coefficients and therefore an accurately defined differential
equation at each time step. With the additional realization that stress concentration near
the hole will cause large stretch gradients, it was finally decided to choose d 0·05,
1 ~ r ~ 3, d = 0·1, 3 ~ r ~ 5. Changing from d = 0·2 to d = 0·1, 1 ~ r S 5, in obtaining
the transient solution produced changes in stretch ratios and stress of up to 5 per cent.
A change from d = 0·1, 1 ~ r ~ 5, to the final choice caused a maximum change in stretch
ratios of 1·8 per cent and in stresses of 3 per cent. These changes occurred near the hole
and rapidly decreased to about 0·5 per cent as r increased to the outer boundary. From a
numerical point of view this accuracy could be improved by further reducing d, especially
near the hole and increasing the number of time steps. From an engineering point of view,
since this causes a substantial increase in computation time, the present accuracy was
considered satisfactory.

Confidence in the accuracy of the numerical method fer the above stated choices of
radial and time increments is enhanced by considering the relaxation problem. As was
mentioned at the end of Section 4, the initial and residual solutions for the relaxation
problem should coincide. In fact, the residual solution limit of the transient solution
differed from the initial state by at most 0·5 per cent in the stretch ratios and 1 per cent
in the stresses. Furthermore, the assumed constitutive equation is such that when f3 = 0,
the stretch ratios are independent of time. That is, the assumption Aj(r, t) = Aj(r) implies
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5,0

that lT~r, t) = aJr)f(t). Since f(t) drops out of (2.8) this solution is possible. The numerical
solution of (2.5), (2.12) for A.*(t) = 1·5, fJ "'" 0.0, does not differ [rom the initial state until
t = 3·16 and then the stretch ratios change by at most 0·4 per cent to a new value which
does not vary with time.

As a final comment on the accuracy of the numerical procedure it is useful to point out
that near the hole..1.2 > 1 and ..1.1 < 1,23 < 1, so that, by (3.4), a2 depends primarily on ..1.~.

If the numerical solution gives )'2(1 +e), where s is a small error term, then a 2 depends on
A~(l+2e). Thus, the change in stress is usually about twice the change in stretch ratio.

The numerical solution to the relaxation problem is represented in Figs. 2-4. As was
mentioned above, when fJ = 0, the kinematic quantities pia, 41 and 22 do not vary with
time. Their distribution is shown in Fig. 2. When fJ = 0·05, these quantities vary only slightly
from their initial values, or equivalently, from the solution with fJ = O. Hence Fig. 2 can
also be considered to show their initial values. When fJ = 0·05, rand t are coupled in the
relaxation function through the product p(I(r»t. Figure 2 shows that TRP(I(r)) varies only
slightly with r so that this coupling is weak. Thus, the results that A,(r, t) ~ Aj(r) is a con
sequence of the fact that by (3.4) one also has that lTj ~ O"j(r)g(r, t) and the variation of
g(r, t) with r is small. Figures 2-4 show the strong local influence of the hole. A moderate
circumferential stretch ratio at r = 5, ..1.2 = 1·5, is magnified to .42 = 2·85 at r = 1. The
local influence of the hole is evidenced by the observation from Fig. 2 that at r = 5 A. 1
has already approached to within 10 per cent of 22 , Since ..{2 > 1 and Al ::= A3 < 1 near
r = 1, it follows from (3.4) that 0"2 near r = 1 depends primarily on A.~. Thus, as Fig. 3
shows, the strain concentration generates a high stress concentration. Figures 3 and 4 show

8.0.--------,------..,.------.,.-----.

Ot-,- '--- --' ~ _s

1-0 ,1;.0 3.0 4,0

rIo

FIG. 2. Relaxation problem (stretch boundary condition}-particle distributioll of radial mapping,
slretch ratios and inverse of stretch ratio dependent relaxation time.
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8.0r-----,...------r-----.....,-----....,

--- f:J-005
----f:J·O

------
'-3.16

O,--::- ----:::'-::- ---,:;'-;:- ~----~

1.0 2.0 3.0 4.0 5.0

ria

FIG. 3. Relaxation problem-particle distribution of circumferential stress (J 2/CO at various times for
fJ = 0·0 and fJ = 0·05.
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that the stress distribution corresponding to fJ = 0 relaxes slower than the stress distribu
tion for fJ = 0·05. Furthermore, when fJ = 0·05, the strain concentration causes the stress
concentration to relax out faster than when fJ = O.

The deformation history of the membrane for the creep problem is shown in Fig. 5.
As the solution for fJ = 0·05 shows, dependence of relaxation time on the stretch ratios
strongly influences how the membrane approaches its residual state. This follows from
the fact that for the faster relaxing material, the strain at a particle increases more rapidly
in order to balance the applied stresses. At t = 1·0 the relaxation time away from the hole
is about 5 per cent less than if fJ = 0 and the membrane is closer to its residual deformed
state. The relaxation time near the hole is about 20 per cent less than in the rest of the
membrane. Since higher stresses are required near the hole, particles must stretch more
and the hole opens more than if fJ = O. As the residual state is approached and time effects
diminish, the particles approach residual elastic behavior and the membrane readjusts
to the same final shape as for fJ = O.

The distribution of stress components with respect to membrane particles is shown
in Figs. 6 and 7. Because of the large deformation of the membrane, it was more convenient
to plot the stress against particle label ria. When fJ = 0, these stresses increase monotoni
cally from their values in the initial elastic response state to their residual values. When
fJ = 0·05 these figures also show the significant changes in the stress histories and distri
butions arising from the membrane overshoot which results when relaxation time is
decreased by the amount of stretching.
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AOCTpaKT-PewaIOTClI ,!lBe 1a,!la~11 ,!lJIlI 60JIbWl1X nJIOCKI1X OCeCI1MMeTpl1~CCKI1X )l.e(j>opMaUI1H KOJIbueBOH
MeM6paHbl, H1rOTOBJIeUHOH In HellHHeHHoro, B1I1Koynpyroro MaTepl1alla. O,!lHa 1a)l.a~a KacaeTc1I3aAaHHoH
,ue(j>opMaUI1I1 Ha BHeWHeH rpaHl1ue, BTopall lKe 1a,uaUHoro YCI1JIl1l1. 3TH 1a,uaql1 nOAo6paHbi B KaQeCTBe
npl1MCpOB, Allll l1JIJIIOCTpaUHH o606weHI111 KJIaCCa 1a)l.a~ LlJIlI B1I1KoynpyrOH MeM6paHbl, Ha OCHoBe CooTBe
TCTBYlOweH 1aLla'll1 ynpyroH MeM6paUbl, npe,uJIOlKeHHOH OHroM, O'leHb y)l.06HbIM AJlll Ql1CJleHHOrO
paC'IeTa. B (j>OpMyJll1pOBKe HcnOJlb1YlOTClI KoJ$<!lIl1WeUTbl paLlHallbHoro OKpylKHOro paCTHlKeHHlI, B
l<aQeCTBe 1aBHCl1MblX nepeMeHHblx. B ,TOM CJIy~ae. OHI1 Haxo,ullTClI nyTeM peweHlll1 HeJll1HeHHblX AII(j>(j>epe
Hl\HallhHO-HHTerpanbHbIX ypaBHeHHH, nepBoro nopll,ul<a. 4HCJIeHHblH npOl~ecc lIBlllleTClI Tal<l1M lKe, 'ITO
npl'! KalK,1l.0H O'lepeAHOH CTeneHH. 1aAaQa COOTBeTcTByeT CHCTeMe HellllHeHHbIx, 06bll<HOBeHHblX AII(j>(j>epe
Hl.\l1allhHblx ypaBHeHHH, AJIlI TpaHc(j>opMal.\HOHUbIX KO,(j><jJI1UHeHTOB paCTlIlKeHl1l1. 3aTeM, Tal<alllKe CI1CTeMa
HHTerpI1pyeTclI nyTeM TaKoro lKe QI1CnOBOro npouecca. KaK B COOTBeTCTBYIOUleH ynpyroH 3a,!la~e.


